Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731823

RESUMEN

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Asunto(s)
Portadores de Fármacos , Lamotrigina , Polímeros Impresos Molecularmente , Lamotrigina/química , Portadores de Fármacos/química , Polímeros Impresos Molecularmente/química , Polímeros Impresos Molecularmente/síntesis química , Impresión Molecular/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Liberación de Fármacos , Difracción de Rayos X , Adsorción , Concentración de Iones de Hidrógeno
2.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748375

RESUMEN

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Asunto(s)
Carbono , Dopamina , Colorantes Fluorescentes , Límite de Detección , Polímeros Impresos Molecularmente , Nifedipino , Puntos Cuánticos , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Nifedipino/química , Nifedipino/análisis , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Dopamina/orina , Dopamina/análisis , Carbono/química , Espectrometría de Fluorescencia/métodos , Humanos , Polimerizacion , Impresión Molecular , Comprimidos/análisis
3.
Sci Rep ; 14(1): 10293, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704412

RESUMEN

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Asunto(s)
Plaguicidas , Pirimidinas , Plaguicidas/análisis , Carbamatos/análisis , Carbamatos/química , Puntos Cuánticos/química , Polímeros Impresos Molecularmente/química , Polímeros/química , Espectrometría de Fluorescencia/métodos , Grafito/química , Impresión Molecular/métodos , Adsorción , Límite de Detección , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Nanocompuestos/ultraestructura
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692110

RESUMEN

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Asunto(s)
Polímeros Impresos Molecularmente , Urea , Uretano , Vino , Uretano/análisis , Uretano/química , Polímeros Impresos Molecularmente/química , Urea/análisis , Urea/química , Vino/análisis , Espectrometría de Fluorescencia/métodos , Azidas/química , Límite de Detección , Adsorción , Estructuras Metalorgánicas/química , Impresión Molecular/métodos
5.
Anal Biochem ; 691: 115551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38702023

RESUMEN

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Asunto(s)
Técnicas Electroquímicas , Impresión Molecular , Fenilendiaminas , Timol , Fenilendiaminas/química , Timol/análisis , Timol/química , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , Polímeros Impresos Molecularmente/química , Carbono/química , Reproducibilidad de los Resultados
6.
J Chromatogr A ; 1725: 464876, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718697

RESUMEN

Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Microesferas , Impresión Molecular , Agua , Adsorción , Agua/química , Ácido 2,4-Diclorofenoxiacético/análisis , Ácido 2,4-Diclorofenoxiacético/química , Polímeros/química , Cinética , Polímeros Impresos Molecularmente/química
7.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730044

RESUMEN

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Polímeros Impresos Molecularmente , Zinc , Polímeros Impresos Molecularmente/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Zinc/química , Grafito/química , Humanos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análisis , Aminoimidazol Carboxamida/sangre , Aminoimidazol Carboxamida/química , Nanoestructuras/química , Electrodos
8.
J Hazard Mater ; 470: 134218, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581878

RESUMEN

The development of high-performance sensors for doxycycline (DOX) detection is necessary because its residue accumulation will cause serious harm to human health and the environment. Here, a novel tri-emission ratiometric fluorescence sensor was proposed by using "post-mixing" strategy of different emissions fluorescence molecularly imprinted polymers with salicylamide as dummy template (DMIPs). BSA was chosen as assistant functional monomer, and also acted as sensitizers for the aggregation-induced emission (AIE) effect of DOX. The blue-emitting carbon dots and the red-emitting CdTe quantum dots were separately introduced into DMIPs as the response signals. Upon DOX recognition within 2 min, blue and red fluorescence of the tri-emission DMIPs sensor were quenched while green fluorescence of DOX was enhanced, resulting in a wide range of color variations observed over bluish violet-rosered-light pink-orange-yellow-green with a detection limit of 0.061 µM. The sensor possessed highly selective recognition and was successfully applied to detect DOX in complicated real samples. Moreover, with the fluorescent color collection and data processing, the smartphone-assisted visual detection of the sensors showed satisfied sensitivity with low detection limit. This work provides great potential applications for rapid and visual detection of antibiotics in complex substrates.


Asunto(s)
Antibacterianos , Compuestos de Cadmio , Doxiciclina , Impresión Molecular , Puntos Cuánticos , Espectrometría de Fluorescencia , Telurio , Doxiciclina/análisis , Doxiciclina/química , Puntos Cuánticos/química , Telurio/química , Antibacterianos/análisis , Compuestos de Cadmio/química , Límite de Detección , Fluorescencia , Carbono/química , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Teléfono Inteligente
9.
Food Chem ; 449: 139291, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608609

RESUMEN

The residues of erythromycin (ERY) may have negative impacts on the ecological environment, health, and food safety. How to detect ERY effectively and visually is a challenging issue. Herein, we synthesized a molecularly imprinted polymer based nanozymes for selective detection of erythromycin (ERY-MIPNs) at neutral pH, and developed a mobile phone-assisted bicolor colorimetric detection system. This system produced a wide range of color changes from blue to pinkish purple as the ERY concentration increased, making it easy to capture the visualization result. Also, the system showed good sensitivity to ERY ranging from 15 to 135 µM, with a detection limit of 1.78 µM. In addition, the system worked well in the detection of ERY in river water and milk, with the recoveries of 95.57% âˆ¼ 103.20%. These data suggests that this strategy is of considerable potential for practical applications and it provides a new idea for visual detection with portable measurement.


Asunto(s)
Colorimetría , Eritromicina , Leche , Ríos , Contaminantes Químicos del Agua , Leche/química , Colorimetría/métodos , Animales , Ríos/química , Eritromicina/análisis , Eritromicina/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Teléfono Celular , Impresión Molecular , Contaminación de Alimentos/análisis , Límite de Detección , Antibacterianos/análisis , Polímeros Impresos Molecularmente/química
10.
Int J Biol Macromol ; 267(Pt 1): 131321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570001

RESUMEN

The improper usage of levofloxacin (LEV) endangers both environmental safety and human public health. Therefore, trace analysis and detection of LEV have extraordinary significance. In this paper, a novel molecularly imprinted polymer (MIP) electrochemical sensor was developed for the specific determination of LEV by electrochemical polymerization of o-phenylenediamine (o-PD) using poly(3,4-ethylenedioxythiophene)/chitosan (PEDOT/CS) with a porous structure and rich functional groups as a carrier and LEV as a template molecule. The morphology, structure and properties of the modified materials were analyzed and studied. The result showed that the electron transfer rate and the electroactive strength of the electrode surface are greatly improved by the interconnection of PEDOT and CS. Meanwhile, PEDOT/CS was assembled by imprinting with o-PD through non-covalent bonding, which offered more specific recognition sites and a larger surface area for the detection of LEV and effectively attracted LEV through intermolecular association. Under the optimized conditions, MIP/PEDOT/CS/GCE showed good detection performance for LEV in a wide linear range of 0.0019- 1000 µM, with a limit of detection (LOD, S/N = 3) of 0.4 nM. Furthermore, the sensor has good stability and selectivity, and exhibits excellent capabilities in the microanalysis of various real samples.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Quitosano , Técnicas Electroquímicas , Levofloxacino , Impresión Molecular , Polímeros Impresos Molecularmente , Polímeros , Quitosano/química , Levofloxacino/análisis , Levofloxacino/química , Polímeros/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Electrodos , Límite de Detección , Humanos
11.
J Chromatogr A ; 1725: 464949, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688054

RESUMEN

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert­butyl ether, MTBE, ethyl tert­butyl ether, ETBE, and tert­butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed. The optimal values for extraction in the study were found to be 51.2 °C extraction temperature, 46.2 min extraction time, 27 % salt concentration, and 620 rpm stirring speed. Under the optimized conditions, the calibration curves demonstrated excellent linearity within the range of 0.1-100 µg L-1, with correlation coefficients (R2) exceeding 0.99. The limits of detection (LODs) for MTBE, ETBE, and TBF were obtained 0.06, 0.08, and 0.09 µg L-1, respectively. Moreover, the limits of quantification (LOQs) for MTBE, ETBE, and TBF were obtained 0.18, 0.24, and 0.27 µg L-1, respectively. The enrichment factor was also found to be in the range of 98-129.The NTD-GC-FID procedure demonstrated a high extraction efficiency, making it a promising tool for urinary biomonitoring of fuel ether oxygenates with improved sensitivity and selectivity compared to current methods.


Asunto(s)
Límite de Detección , Éteres Metílicos , Zeolitas , Zeolitas/química , Humanos , Éteres Metílicos/orina , Éteres Metílicos/química , Polímeros Impresos Molecularmente/química , Monitoreo Biológico/métodos , Cromatografía de Gases/métodos , Éteres de Etila/orina , Éteres de Etila/química
12.
Lab Chip ; 24(10): 2700-2711, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38651374

RESUMEN

Mycotoxins are secondary metabolites of certain moulds, prevalent in 60-80% of food crops and many processed products but challenging to eliminate. Consuming mycotoxin-contaminated food and feed can lead to various adverse effects on humans and livestock. Therefore, testing mycotoxin residue levels is critical to ensure food safety. Gold standard analytical methods rely on liquid chromatography coupled with optical detectors or mass spectrometers, which are high-cost with limited capacity. This study reported the successful development of a microfluidic "lab-on-a-chip" device to enrich and detect zearalenone in food samples based on the fluorescence quenching effect of quantum dots and selective affinity of molecularly imprinted polymers (MIPs). The dummy template and functional polymer were synthesized and characterized, and the detailed microfluidic chip design and optimization of the flow conditions in the enrichment module were discussed. The device achieved an enrichment factor of 9.6 (±0.5) in 10 min to quantify zearalenone spiked in food with high recoveries (91-105%) at 1-10 mg kg-1, covering the concerned residue levels in the regulations. Each sample-to-answer test took only 20 min, involving 3 min of manual operation and no advanced equipment. This microfluidic device was mostly reusable, with a replaceable detection module compatible with fluorescence measurement using a handheld fluorometer. To our best knowledge, the reported device was the first application of an MIP-based microfluidic sensor for detecting mycotoxin in real food samples, providing a novel, rapid, portable, and cost-effective tool for monitoring mycotoxin contamination for food safety and security.


Asunto(s)
Contaminación de Alimentos , Dispositivos Laboratorio en un Chip , Polímeros Impresos Molecularmente , Puntos Cuánticos , Zearalenona , Zearalenona/análisis , Puntos Cuánticos/química , Contaminación de Alimentos/análisis , Polímeros Impresos Molecularmente/química , Impresión Molecular , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Análisis de los Alimentos/instrumentación
13.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604056

RESUMEN

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Asunto(s)
Brassica , Dimetoato , Límite de Detección , Polímeros Impresos Molecularmente , Dimetoato/análisis , Brassica/química , Polímeros Impresos Molecularmente/química , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/métodos , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis
14.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639924

RESUMEN

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Asunto(s)
Ácidos Borónicos , Impresión Molecular , Nanopartículas , Ácido Shikímico , Dióxido de Silicio , Extracción en Fase Sólida , Dióxido de Silicio/química , Nanopartículas/química , Impresión Molecular/métodos , Ácido Shikímico/química , Ácido Shikímico/aislamiento & purificación , Ácidos Borónicos/química , Extracción en Fase Sólida/métodos , Polímeros Impresos Molecularmente/química , Adsorción , Medicina de Hierbas/métodos
15.
Biosens Bioelectron ; 257: 116330, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677022

RESUMEN

Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 µM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 µM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.


Asunto(s)
Técnicas Biosensibles , Caprilatos , Colorantes Fluorescentes , Fluorocarburos , Estructuras Metalorgánicas , Polímeros Impresos Molecularmente , Teléfono Inteligente , Contaminantes Químicos del Agua , Estructuras Metalorgánicas/química , Caprilatos/análisis , Caprilatos/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/instrumentación , Fluorocarburos/química , Fluorocarburos/análisis , Polímeros Impresos Molecularmente/química , Contaminantes Químicos del Agua/análisis , Límite de Detección , Elementos de la Serie de los Lantanoides/química , Espectrometría de Fluorescencia/métodos , Humanos
16.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677016

RESUMEN

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Polímeros Impresos Molecularmente , Análisis de la Célula Individual , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Células PC12 , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Animales , Ratas , Nanodiamantes/química , Electrodos , Fibra de Carbono/química , Impresión Molecular/métodos , Límite de Detección , Polímeros/química
17.
J Chromatogr A ; 1724: 464910, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657316

RESUMEN

A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 µg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.


Asunto(s)
Colesterol , Indoles , Lipoproteínas LDL , Polímeros Impresos Molecularmente , Polímeros , Lipoproteínas LDL/sangre , Lipoproteínas LDL/química , Lipoproteínas LDL/aislamiento & purificación , Adsorción , Polímeros/química , Colesterol/sangre , Colesterol/química , Indoles/química , Animales , Polímeros Impresos Molecularmente/química , Dopamina/sangre , Dopamina/química , Dopamina/aislamiento & purificación , Dopamina/análisis , Impresión Molecular/métodos , Cabras , Nanosferas/química
18.
Environ Pollut ; 349: 123917, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583794

RESUMEN

Phthalate esters (PAEs) are plasticizers widely used in the industry and easily released into the environment, posing a serious threat to human health. Molecularly imprinted polymers (MIPs) are important as selective adsorbents for the removal of PAEs. In this study, three kinds of mussel-inspired MIPs for the removal of PAEs were first prepared with gallic acid (GA), hexanediamine (HD), tannic acid (TA), and dopamine (DA) under mild conditions. The adsorption results showed that the MIP with low cost derived from GA and HD (GAHD-MIP) obtained the highest adsorption capacity among these materials. Furthermore, 97.43% of equilibrium capacity could be reached within the first 5 min of adsorption. Especially, the dummy template of diallyl phthalate (DAP) with low toxicity was observed to be more suitable to prepare MIPs than dibutyl phthalate (DBP), although DBP was the target of adsorption. The adsorption process was in accordance with the pseudo-second-order kinetics model. In the isotherm analysis, the adsorption behavior agreed with the Freundlich model. Additionally, the material maintained high adsorption performance after 7 cycles of regeneration tests. The GAHD-MIP adsorbents in this study, with low cost, rapid adsorption equilibrium, green raw materials, and low toxicity dummy template, provide a valuable reference for the design and development of new MIPs.


Asunto(s)
Dibutil Ftalato , Ácido Gálico , Polímeros Impresos Molecularmente , Contaminantes Químicos del Agua , Adsorción , Dibutil Ftalato/química , Contaminantes Químicos del Agua/química , Ácido Gálico/química , Polímeros Impresos Molecularmente/química , Ácidos Ftálicos/química , Cinética , Purificación del Agua/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124262, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38613900

RESUMEN

Myeloid leukemia is a chronic cancer, which associated with abnormal BCR-ABL tyrosine kinase activity. Imatinib (IMB) acts as a tyrosine kinase inhibitor and averts tumor growth in cancer cells by controlling cell division, so it is urgent to develop an effective assay to detect and monitor its IMB concentration. Therefore, an innovative fluorescent biomimetic sensor is a promising sensing material that constructed for the efficient recognition of IMB and displays excellent selectivity and sensitivity stemming from molecularly imprinted polymer@Fe3O4 (MIP@Fe3O4). The detection strategy depends on the recognition of IMB molecules at the imprinted sites in the presence of coexisting molecules, which are then transferred to the fluorescence signal. The synthesized MIP@Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Furthermore, computational studies of the band gap (EHOMO-ELUMO) of the monomers, IMB, and their complexes were performed. These results confirmed that the copolymer is the most appropriate and has high stability (Binding energy; 0.004 x 10-19 KJ) and low reactivity. A comprehensive linear response over IMB concentrations from 5 × 10-6 mol/L to 8 × 10-4 mol/L with a low detection limit of 9.3 × 10-7 mol/L was achieved. Furthermore, the proposed technique displayed long-term stability (over 2 months), high intermediate precision (RSD<2.1 %), good reproducibility (RSD <1.9 %), and outstanding selectivity toward IMB over analogous molecules with similar chemical and spatial structure (no interference by 100 to 150-fold of the competitors). Owing to these merits, the proposed fluorescence sensor was utilized to detect IMB in drug tablets and human plasma, and satisfactory results (99.3-100.4 %) were obtained. Thus, the synthesized fluorescence sensor is a promising platform for IMB sensing in various applications.


Asunto(s)
Antineoplásicos , Colorantes Fluorescentes , Mesilato de Imatinib , Polímeros Impresos Molecularmente , Espectrometría de Fluorescencia , Mesilato de Imatinib/sangre , Humanos , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Antineoplásicos/sangre , Antineoplásicos/farmacología , Antineoplásicos/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Óxido Ferrosoférrico/química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Impresión Molecular/métodos
20.
Talanta ; 274: 125997, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569369

RESUMEN

Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.


Asunto(s)
Antocianinas , Técnicas Electroquímicas , Glucósidos , Mediciones Luminiscentes , Estructuras Metalorgánicas , Impresión Molecular , Rutenio , Dióxido de Silicio , Antocianinas/química , Antocianinas/análisis , Dióxido de Silicio/química , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Rutenio/química , Glucósidos/química , Glucósidos/análisis , Estructuras Metalorgánicas/química , Límite de Detección , Polímeros Impresos Molecularmente/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA